Unit 9: Atomic Structure, Periodicity and Chemical Bonding

Unit 9: Atomic Structure, Periodicity and Chemical Bonding

UNIT 9: ATOMIC STRUCTURE, PERIODICITY AND CHEMICAL BONDING By: Anthony Gates AP Chemistry QUANTUM MECHANICAL MODEL Previous models, such as the Bohr model, assumed that electrons behaved like single particles moving along a set path.

This could not explain certain properties of elements. The quantum mechanical (QM) model addresses known problems with the classical shell model and is also consistent with atomic electronic structures that correspond with the periodic table. Electrons behave like particles and like waves. QM CONT. The QM model can be approximately solved using computers and serves

as the basis for software that calculates the structure and reactivity of molecules. Computers can do it faster, thus allowing for difficult calculations to be performed faster. The QM model is based off of Schrodingers equation an equation that is unsolvable unless you cut some corners.

BILLIARDS ELECTRON MOVEMENT Heisenberg Uncertainty Principle: The more accurately we know a particles position, the less accurately we know its momentum, (and vice versa) thus causing a minimum amount of uncertainty in a particles movement to always exist. This becomes less important as the mass of the object increases thus why we can predict the movement of billiard balls.

This is affects our predictions of electron movement greatly. ThusWE CANNOT ASSUME ELECTRONS MOVE IN A CONSTANT CIRCULAR PATH!!! THE AFFECT OF SPIN Think of billiards has anyone ever heard of putting a little English on the ball? In billiards depending on where you hit the cue ball with your cue, you can cause a different spin which in turn causes a different movement in the cue ball.

Hitting a little high causes a topspin which causes the cue ball to keep moving forward even after impact. Electrons have various spins as well and thus there movement (despite the lack of collisions) is affected by these spins. ORBITALS Due to the varying spins, distances from the nucleus and both attractive and repulsive forces present the electrons movements cannot be predicted. However we can predict their positions based on probability.

Take this school for example Classes Lockers Friends Clubs/activities RADIAL DISTRIBUTION The probability of finding an electron.

1s Orbital 2s Orbital How does this relate to the bohr model? QUANTUM NUMBERS n= principal quantum number l = angular momentum number Number of nodes

0 to n-1 ml=magnetic quantum number Orientation in space -l to +l ms=electron spin quantum number -1/2 or +1/2 PAULI EXCLUSION PRINCIPLE

No two electrons in the same orbital can have the same spin. Electrons in atoms have an intrinsic property known as spin that can result in atoms having a magnetic moment. There can be at most two electrons in any orbital and these electrons must have opposite spin. MR. GATES IF YOU PLEASE Please explain/diagram atomic orbitals and their nodes

ELECTRON CONFIGURATIONS Electron configurations provide a method for describing the distribution of electrons in an atom or ion. In multielectron atoms and ions, the electrons can be thought of as being in shells and subshells, indicated by the relatively close ionization energies associated with some groups of electrons.

Inner electrons are called core electrons, and outer electrons are called valence electrons. COULOMBS LAW Coulombs Law is the basis for describing the energy of interaction between protons and electrons. Based on Coulombs Law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them.

If the two charges are of opposite sign , the force between them is attractive; if they are of the same sign, the force between them is repulsive. COULOMBS LAW Potential Energy = (2.31 x 10-19Jnm)[(q1 x q2)/r] Force (q1 x q2)/(r2) COULOMBS LAW & IONIZATION ENERGY Each electron in an atom has a different ionization energy,

which can be qualitatively explained through Coulombs Law. As two atoms come together there are three forces at work Nucleus to nucleus repulsion Electron to electron repulsion Electron to nucleus attraction Electron to Electron shielding COULOMBS LAW & IONIZATION ENERGY The first ionization energy is the minimum energy needed to

remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. The relative ionization energy can be estimated through qualitative application of Coulombs Law. The farther an electron is from the nucleus, the lower its ionization energy. When comparing two species with the same arrangement of electron, the higher the nuclear charge, the higher the ionization energy of an electron in a given subshell.

SHIELDING Core electrons are generally closer to the nucleus than valence electrons, and they are considered to shield the valence electrons from the full electrostatic attraction of the nucleus. This phenomenon can be used in conjunction with Coulombs Law to explain/rationalize/predict relative ionization energies. Differences in electron-electron repulsion are responsible for the differences in energy between electrons in different orbitals in the

same shell. ATOMIC RADII Atomic Radius increases down a group. This is due to the orbital sizes increasing in successive principal quantum levels (numbers). Atomic Radius decreases to the right of the periodic table due to increased attraction between the electrons and the nucleus at a relatively similar distance.

ELECTRONEGATIVITY Electronegativity is the ability of an atom in a molecules to attract shared electrons to it. Electronegativity values for the representative elements increase going from the left to right across a period and decrease going down a group. These trends can be understood qualitatively through the electronic structure of the atoms, the shell model,

and Coulombs Law. BELL RINGER!! Turn to the person next to you and use Coulombs Law and the shell model to describe why ionization energy increases as you remove additional electrons beyond the first. Use Coulombs Law and the shell model to justify the concept of electron shielding.

PERIODIC TABLE The structure of the periodic table is a consequence of the pattern of the electron configurations and the presence of shells (and subshells) of electrons in atoms. Ignoring a few exceptions, the electron configuration of an atom can be deduced from the elements position on the periodic table http://www.ptable.com/#Orbital

PERIODIC TRENDS For many atomic properties, trends within the periodic table (and relative values for different atoms and ions) can be qualitatively understood and explained using Coulombs Law, the shell model, and the concept of shielding/effective nuclear charge. Zeff = (Atomic #) (# of shielding e-) These properties include: First ionization energy

Atomic and ionic radii Electronegativity Typical ionic charges PERIODICITY It is useful to understand the trends in the periodic table when building molecules since replacing an element with an element in the same group may lead to similar properties within the molecule. Ex. Since SiO2 can be ceramic, SnO2 may be as well.

LIGHT Early physicist believed light acted like a wave and thus did not have mass. Later this was proven wrong with what is called the dual nature of light. Dual nature of light: light acts as both a wave and a particle This is due to Einstein proposing that light is made up of a stream of tiny particles called photons E=mc2

LIGHT AND ENERGY The energy of a photon is related to the frequency of the electromagnetic wave through Plancks equation (E=hv). Plancks constant (h) = 6.626 x 10-34 Js When a photon is absorbed (or emitted) by a molecule, the energy of the molecule is increased (or decreased) by an amount equal to the energy of the photon. E = hv

c = vv Where c is the speed of light 3.0x108m/s and v is the wavelength. PHOTOELECTRON SPECTROSCOPY Photoelectron spectroscopy (PES) is the study of electrons emitted by an atom as a result of shining a light upon it.

In the photoelectric effect, incident light ejects electrons from a material. This requires the photon to have sufficient energy to eject the electron. Photoelectron spectroscopy determines the energy needed to eject electrons from the material. Measurement of these energies provides a method to deduce the shell structure of an atom. The intensity of the photoelectron signal at a given energy is a measure of the number of electrons in that energy level.

PES The electronic structure of atoms with multiple electrons can be inferred from evidence provided by PES. http://www.chem.arizona.edu/chemt/Flash/photoelectron.html Different types of molecular motion lead to absorption or emission of photons in different spectral regions. Infrared radiation is association with transitions in molecular vibrations and so can be used to detect the presence of different types of bonds. Ultraviolet/visible radiation is associated with transitions in electronic

energy levels and so can be used to probe electronic structure. HOMEWORK P. 321-324 # 31, 35, 67, 79, 85, 87 LEWIS DOT STRUCTURE REVIEW Lewis diagrams can be constructed according to a well-established set of principles. Atoms must achieve noble gas configurations.

LEWIS DOT STRUCTURE REVIEW In cases where more than one equivalent Lewis structure can be constructed, resonance must be included as a refinement to the Lewis structure approach in order to provide qualitatively accurate predictions of molecular structure and properties (in some cases). FORMAL CHARGES

Formal Charge: the difference between the number of valence electrons on the free atom and the number of the valence electrons assigned to the atom in the molecule. Formal charge can be used as a criterion for determining which of several possible valid Lewis diagrams provides the best model for predicting molecular structure and properties. CALCULATING FORMAL CHARGES Formal Charge = (# valence e- on free atom) (# of valence eassigned

to atom in molecule) BOND POLARITY Two or more valence electrons shared between atoms of identical electronegativity constitute a nonpolar covalent bond. Two or more valence electrons shared between atoms of unequal electronegativity constitute a polar covalent bond.

POLAR COVALENT BONDS The difference in electronegativity for the two atoms involved in a polar covalent bond is not zero. The atom with a higher electronegativity will develop a partial negative charge relative to the other atom in the bond. For diatomic molecules the partial negative charge on the more electronegative atom is equal in magnitude to the partial positive charge on the less electronegative

POLAR COVALENT BOND CONT. Greater differences in electronegativity lead to greater partial charges, and consequently greater bond dipoles. Bond Dipoles: a polarity within a bond; when a bond has a center of positive charge and a center of negative charge. Typically this is shown via an arrow pointing towards the atom with the partial negative charge. The sum of partial charges in any molecule or ion must

be equal to the overall charge on the species. DIPOLE MOMENTS Dipole moment: occurs when a molecule has a center of positive charge and a center of negative charge. If the sum of the bond dipoles do not cancel each other out, the molecule is said to have a dipole moment.

All polar molecules have dipole moments. VSEPR Valence Shell Electron Pair Repulsion The VSEPR model uses the Coulombic repulsion between electrons as a basis for predicting the

arrangement of electron pairs around a central atom. VSEPR CONT. The combination of Lewis diagrams with VSEPR model provides a powerful model for predicting structural properties of many covalently bonded molecules and polyatomic ions, including the following. Molecular Geometry

Bond Angles Relative Bond Energies Based on Bond Order Relative Bond Lengths (multiple bonds, effects of atomic radius) Presence of a dipole moment LEWIS STRUCTURE LIMITATIONS As with any model, there are limitations to the use of the Lewis structure model, particularly in cases with an odd number of valence electrons.

Recognizing that Lewis diagrams have limitations is of significance. Students dont need to know the exceptions themselves, but simply that there are exceptions to the octet rule Boron, PCl5, etc. HOMEWORK Pg. 383-386 # 25a, 25b, 25d, 67, 75, 81, 82

GRAPHING BOND FORMATION The formation of a nonpolar covalent bond can be represented graphically as a plot of potential energy vs. distance for the interaction of two identical atoms. The relative strengths of attractive and repulsive forces as a function of distance determine the shape of the graph. The bond length is the distance between the bonded atoms nuclei, and is the distance of minimum potential energy where the attractive and repulsive forces are

balanced. GRAPHING CONTINUED The bond energy is the energy required for the dissociation of the bond. This is the net energy of stabilization of the bond compared to the two separated atoms.

Typically, bond energy is given on a per mole basis. LATTICE ENERGY Lattice Energy: the change in energy that takes place when separated gaseous ions are packed together to form an ionic solid. Energy required to bring molecules together to form crystals. Based on Coulombs Law

IONIC CRYSTALS The cations and anions in an ionic crystal are arranged in a systematic, periodic 3-D array that maximizes the attractive forces among cations and anions while minimizing repulsive forces. Coulombs Law describes the force of attraction between the cations and anions in an ionic crystal. Because the force is proportional to the charge on each ion, large charges lead to stronger interactions. Because the force is inversely proportional to the square of the

distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. HYBRIDIZATION Organic chemists commonly use the terms hybridization and hybrid orbital to describe the arrangement of electrons around the central atom. When there is a bond angle of 180, the central atom is said to be sp hybridized; for 120, the central atom is sp2 hybridized;

and for 109, the central atoms is sp3 hybridized. Students should be aware of this terminology, and be able to use it. Students do not need to know the hybridization of molecules with expanded SIGMA VS. PI Bond formation is associated with overlap between atomic orbitals. In multiple bonds, such overlap leads to the formation of both sigma and

pi bonds. The overlap is stronger in sigma than pi bonds, which is reflected in sigma bonds having larger bond energy than pi bonds. The presence of a pi bond also prevents the rotation of the bond, and leads to structural isomers. OVERLAP CONT. In systems such as benzene, where atomic p-orbitals overlap strongly with more than one other p-orbital,

extended pi bonding exists, which is delocalized across more than two nuclei. Such descriptions provide an alternative description to resonance in Lewis structures. A useful example of delocalized pi bonding is molecular solids that conduct electricity. The discovery of such materials at the end of the 1970s overturned a long-standing assumption in chemistry that molecular solids will always be insulators. COMPARING ATOMIC MODELS

Molecular orbital theory describes covalent bonding in a manner that can capture a wider array of systems and phenomena than the Lewis of VSEPR models. Molecular orbital diagrams, showing the correlation between atomic and molecular orbitals, are useful qualitative tools related to molecular orbital theory. Use the details of modern atomic theory to explain each of the following experimental observations.

(a) Within a family such as the alkali metals, the ionic radius increases as the atomic number increases. (b) The radius of the chlorine atom is smaller than the radius of the chloride ion, Cl . (Radii : Cl atom = 0.99; Cl ion = 1.81 ) (c) The first ionization energy of aluminum is lower than the first ionization energy of magnesium. (First ionization energies: Mg = 7.6 ev; Al = 6.0 ev) (d) For magnesium, the difference between the second and third ionization energies is much larger than the difference between the first and second ionization energies. (Ionization energies for Mg: 1 = 7.6

ev; 2 = 14 ev; 3 = 80 ev) - - 12 13 st

nd rd Answer: (a) The radii of the alkali metal ions increase with increasing atomic number because (1) the outer principal quantum number (or shell or energy level) is larger. OR (2) There is an increase in shielding. (3) The number of orbitals increases. (b) The chloride ion is larger than the chlorine atom because - (any of these)

(1) the electron-electron repulsion increases. (2) the electron-proton ratio increases. (3) the effective nuclear charge decreases. (4) shielding increases. (c) The first ionization energy for Mg is greater than that for Al because - (either of these) (1) the 3p orbital (Al) represents more energy than the 3s orbital (Mg) represents. (2) the 3p electron in an Al atom is better shielded from its nucleus than a 3s electron in a Mg atom. (3) [half credit] a 3p electron is easier to remove than a 3s electron. (d) In a Mg atom, the first two electrons lost are removed from the 3s orbital whereas the

3 electron comes from a 2p orbital; a 2p orbital is much lower in energy than the 3s is; so more energy is needed to remove a 2p electron. rd Explain each of the following observations using principles of atomic structure and/or bonding. (a) Potassium has a lower first-ionization energy than lithium. (b) The ionic radius of N is larger than that of O . (c) A calcium atom is larger than a zinc atom. (d) Boron has a lower first-ionization energy than beryllium.

3- 2- Answer: (a) potassiums valence electron is 4s while lithiums is 2s . potassiums electron is shielded by more electrons than lithium and is therefore more easily removed at a lower energy. (b) The addition of electrons to a neutral atom produces an anion that is significantly larger than its parent atom. Even though both ions are isoelectronic, there is a greater

nuclear positive charge in the oxide ion causing its electrons to be more tightly pulled toward the nucleus. (c) Even though a zinc atom contains 10 more electrons than calcium, these are all 3d electrons, filling an inner shell, not adding another larger one. There is a corresponding increase of 10 more protons for the zinc and this increase in nuclear charge pulls the electrons in more tightly and reducing its size. (d) Borons last electron is 2p and it receives the benefit of effective shielding by its completed 2s electrons. Thus it is easier to remove this electron. 1

1 1 In the SO2 molecule, both of the bonds between sulfur and oxygen have the same length. Explain this observation, supporting your explanation by drawing in the box below a Lewis electron-dot diagram (or diagrams) for the SO2 molecule. On the basis of your Lewis electron-dot diagram(s) in part (c), identify the hybridization of the sulfur atom in the SO2 molecule.

SO2 is a resonance structure that switches between the two forms and evens out the bond length sp2 Structures of the pyridine molecule and the benzene molecule are shown below. Pyridine is soluble in water, whereas benzene is not soluble in water. Account for the difference in solubility. You must discuss both of the substances in your answer.

water is polar and can form hydrogen bonds since it has a hydrogen attached to an oxygen; the lone pair of electrons on the nitrogen creates a slightly polar nitrogen and it can hydrogen bond to the hydrogen in the water. A C-H bond, as those in benzene, is nonpolar and can not hydrogen bond with water. Since there is little attraction between water and benzene (a non-polar molecule) and like dissolves like, benzene will not dissolve in water but the polar pyridine will.

Recently Viewed Presentations

  • Adworks Agency New Employee Orientation - GCFLearnFree.org

    Adworks Agency New Employee Orientation - GCFLearnFree.org

    Free Online Learning & Computer Training: Great website for Microsoft Office classes, computer basics, and more. Offline Resources: Contact Weylon Glen, Director of Human Resources. Financial and Retirement Planning. USA.gov Retirement Resources. The most recent copy of our financial report....
  • Ch. 17.4 "The Legacy of the War"

    Ch. 17.4 "The Legacy of the War"

    But I with mournful tread, Walk the deck my Captain lies, Fallen cold and dead. O Captain! My Captain! Walt Whitman. This poem is an "elegy" which is a poem of mourning. Who is Walt Whitman mourning?
  • Growth Networks Inc - An Overview

    Growth Networks Inc - An Overview

    Digital Logic Design I Chapter 1 Digital Systems and Binary Numbers
  • Probability theory - vsb.cz

    Probability theory - vsb.cz

    A probability tree is a simple and effective method of applying the probability rules by representing events in an experiment by lines. The resulting figure resembles a tree. P( M 1 ) = 7/10
  • Chapter 2 Motion Along a Straight Line Position, Displacement ...

    Chapter 2 Motion Along a Straight Line Position, Displacement ...

    Essential idea: When traveling waves meet they can superpose to form standing waves in which energy may not be transferred. Nature of science: Common reasoning process: From the time of Pythagoras onwards the connections between the formation of standing waves...
  • THE broad line region in active galactic nuclei: Velocity ...

    THE broad line region in active galactic nuclei: Velocity ...

    Measuring the Masses of Supermassive Black Holes . Dr. Catherine (Kate) Grier, the Pennsylvania State University . Email: [email protected] ... We have measured black hole masses via reverberation mapping in more quasars at larger distances than ever before.
  • Generalized Coset Codes for Symmetric/Asymmetric Distributed Source Coding

    Generalized Coset Codes for Symmetric/Asymmetric Distributed Source Coding

    Times New Roman Arial Wingdings Symbol BASiCS v.0.7 Microsoft Equation 3.0 Generalized Coset Codes for Symmetric/Asymmetric Distributed Source Coding Outline Application: Sensor Networks Introduction and motivation Source Coding with Side Information at Receiver (illustration) PowerPoint Presentation PowerPoint Presentation Symmetric Coding...
  • Your Guide to Beach Safety (RNLI) - WordPress.com

    Your Guide to Beach Safety (RNLI) - WordPress.com

    Your Guide to Beach Safety (RNLI) Red connotes blood and shows danger as it links to the many deaths (blood) that are caused due to not being safe at a beach. ... Creates a semantic field of protection. The RNLI...