Scientific Foundation for Future Physicians

Scientific Foundation for Future Physicians

Responses to the Scientific Foundations of Future Physicians report: the effect on Introductory Physics for the Life Sciences Temple University, October 2012 Suzanne Amador Kane Physics Department Haverford College Catherine Crouch Swarthmore College Robert Hilborn Tim McKay University of Texas, University of Dallas

Michigan Mark Reeves George Washington University Outline What is the Association of American Medical Colleges-Howard Hughes Medical Institute (AAMC-HHMI): Scientific Foundations for Future Physicians report? AAMC MR5 review and redesign of the Medical College Admissions Test How Introductory Physics might change in

response Need for Change The approach to science education in the premedical and medical curriculum is largely unchanged for decades . . while biomedical sciences have changed dramatically. Readiness for medical school admission is defined by: lists of required courses content of the MCAT examination Both are rather static criteria, not very explicit about what students should be able to do Need for Change

The Bio2010 report (NAS, published 2002) concluded: Fixed premedical science course requirements and MCAT content constrain the undergraduate science curriculum This applies not just in biology but across the sciences An example: Many students who would make excellent physicians identify premedical science course requirements such as Organic Chemistry as the reason they chose another career. Institutions wishing to innovate their chemistry curricula find it difficult to do so, given the externally imposed premed requirements The Scientific Foundations For Future Physicians Project

Initiated and organized by Association of American Medical Colleges (AAMC) Howard Hughes Medical Institute (HHMI) Committee: medical school faculty undergraduate science and math educators. Diverse institutions MCAT leadership (a division of AAMC) closely involved Committee members are drawn from both medical school and undergraduate institutions Robert Alpern, Co-chair

Yale School of Medicine Sharon Long, Co-chair Stanford University Science faculty [grad/undergrad] Manuel Ares Cell biology U.C. Santa Cruz Karin Akerfeldt

Chemistry Haverford College Julio de Paula Chemistry Lewis and Clark College Robert Hilborn Physics University of Texas at Dallas

Dierdre Labat Biology Xavier University Claudia Neuhauser Math University of Minnesota Gregory Petsko

Chemistry Brandeis University Dee Silverthorne Biology University of Texas at Austin Committee members are drawn from both medical school and undergraduate institutions Medical School faculty Judith Bond Penn State University Medical School

Jules Dienstag Harvard Medical School Andrew Fishleder Cleveland Clinic Michael Friedlander Baylor College of Medicine Gary Gibbons

Morehouse School of Medicine Paul Insel U.C. San Diego Medical School Lynne Kirk U.T. Southwestern Medical Center Bruce Korf University of Alabama Medical School Vinay Kumar

University of Chicago Medical School Paul Marantz Albert Einstein School of Medicine Charge to the Committee What science competencies should medical students demonstrate, before receiving the M.D. degree? What science and mathematics competencies should premedical students demonstrate before entry into medical school. Emphasis should be on defined areas of

knowledge, scientific concepts, and skills rather than on specific courses. Strategy - 1 Undergraduate course requirements should be eliminated and replaced with a list of required competencies. undergraduate schools will have flexibility to design new curricula interdisciplinary classes may be offered innovative educational programs may encourage students to enter medicine and the related biomedical sciences. Strategy - 2

No net increase in premed science requirements Liberal arts are important for education of physicians Presently, 1 year each of: physics, biology, general chemistry, organic chemistry and calculus If we recommend new competencies, then un-needed material should be removed from overall curriculum Strategy - 3 Scientific competencies should be those required to practice medicine includes interpretation of the scientific literature critical and skeptical thinking, analysis These competencies are not designed to prepare for a career in biomedical research.

Some schools may design curricula to prepare students for careers in research Choice is up to each individual institution Strategy - 4 Scientific competencies: Reflect recent advances in the biomedical sciences emphasize the increasingly close relationship with the physical and mathematical sciences. Examples: Statistics is important to allow physicians to be a critical consumer of data from new clinical trials, research on genomic associations, etc. Biochemistry is more relevant than some aspects

of organic chemistry presently emphasized Structure of Recommendations Overarching Principles Competency (Medical or Entering) E1, E2, .8 = broad statement of goal for understanding Learning Objective 1, 2, etc competencies in various areas Examples 1, 2, etc. Structure of Recommendations

Two of the Overarching Principles: 1. Demonstrate knowledge of, and ability to use basic principles of: Mathematics and Statistics Physics Chemistry Biochemistry Biology needed for the application of the sciences to human health and disease 2. Demonstrate observational and analytical skills and the ability to apply those skills and principles to biological situations. Entering Med Student Competencies: E1 E8

1. Apply quantitative reasoning and appropriate mathematics to describe or explain phenomena in the natural world 2. Demonstrate understanding of the process of scientific inquiry, and explain how scientific information is discovered and validated. Demonstrate knowledge of basic physical principles and their applications to the understanding of living systems. Demonstrate knowledge of basic principles of chemistry and some of their applications to the understanding of living systems. Demonstrate knowledge of how bio-molecules contribute to the structure and function of cells.

Apply understanding of principles of how molecular and cell assemblies, organs, and organisms develop structure and carry out function. Explain how organisms sense and control their internal environment and how they respond to external change. Demonstrate an understanding of how the organizing principle of evolution by natural selection explains the diversity of life on earth. 3. 4. 5. 6. 7. 8. Entering Med Student Competencies

Competency E1. Apply quantitative reasoning and appropriate mathematics to describe or explain phenomena in the natural world. Learning Objectives: 5. Make inferences about natural phenomena using mathematical models. Examples Describe the basic characteristics of models (e.g., multiplicative vs. additive). Predict short- and long-term growth of populations (e.g., bacteria in culture). Distinguish the role of indeterminacy in natural phenomena and the impact of stochastic factors (e.g., radioactive decay) from the role of deterministic processes.

Entering Med Student Competencies Competency E3. Demonstrate knowledge of basic physical principles and their applications to the understanding of living systems Learning Objectives: 1. Demonstrate understanding of mechanics as applied to human and diagnostic systems. 2. Demonstrate knowledge of the principles of electricity and magnetism (e.g., charge, current flow, resistance, capacitance, potential, and magnetic fields). 3. Demonstrate knowledge of wave generation and propagation to the production and transmission of light and sound. 4. Demonstrate knowledge of the principles of thermodynamics and fluid motion. 5. Demonstrate knowledge of principles of quantum physics such as atomic

and molecular energy levels, spin, and ionizing radiation 6. Demonstrate knowledge of principles of systems behavior, including inputoutput relationships and positive and negative feedback. Entering Med Student Competencies Competency E3. Demonstrate knowledge of basic physical principles and their applications to the understanding of living systems Learning Objectives: 3. Demonstrate knowledge of wave generation & propagation to the production and transmission of light, sound. - Examples Apply geometric optics to understand image formation in the eye. Apply wave optics to understand the limits of image resolution in the eye.

Apply knowledge of sound waves to describe the use and limitations of ultrasound imaging. Calendar Report released in June, 2009 Accompanying editorial in Science Now: coordinate work with undergraduate institutions, scientific disciplines, medical school and MCAT organizations MCAT revision MR5 approved -- preview booklet released 2011rollout in Jan. 2015 Medical schools response now in progress Challenges for Physics Devise courses that helps students meet the

reports competencies Sharpen the focus of intro physics for life sciences: not everything in the standard introductory physics course is relevant to life science students Work with other STEM colleagues to streamline and focus the pre-health curriculum Report on 2009 Workshop on Intro Physics for Life Sciences 40+ physicists, life scientists, AAMC, APS, AAPT reps AAMC message: SFFP offers a way to innovate without previous MCAT/premed requirements as constraints

Do the right thingteach what physicians/life science students need to knowdont just teach to MCAT (old or new) Life science perspectives Bio/Med more quantitative students need to use (more) physics now Skill/knowledge transfer physics biology, isnt working Make life science connections with physics in class (not later) New content: fluids, basic stat. physics (diffusion, random walks, distributions), electrostatics in media, physical techniques, quantitative methods (data analysis, etc.)

2010 American Association of Medical Physicists meeting Residents: Med students tend to regard physics as something they take to pass their boards Physicists tend to teach physics in the abstract without telling them how it connects Only later do they realize how important it is Medical physicists: emphasized need for more medical physicists for retirement replacements and how much physics MDs need to understand now Audience Challenges

IPLS students dont understand course goals Many feel they cant do physics Fixed ideas about plug-and-chug Learning other approaches in other courses I went into the life sciences to avoid math and physics Diverse student preparation, background Diverse student majors, careers Physics content in SFFP Report

Most topics sound familiar New bio/med emphases What physics to omit/de-emphasize? Swap engineering Life science examples New curricular materials needed: textbooks, good problems (relevant life science content) The rub Bottom-down approach: teach physics later

see an application ? These students see biology in other courses; this is their only chance to learn physics. Teach foundations, the rest will follow. Top-down approach: Bio problem motivates physics tools ? We know transfer isnt happening with this approach; teach them what they need to know/use. The extra motivation results in their learning more physics. The No-Pain, No Physics-Loss IPLS Solution! TEACH THIS

NOT THAT! Less time on Kinematics & friction-free trajectories Constant force, acceleration

Friction Hookean mass-spring systems Keplers Laws Gravitation More time on Actual trajectories Acceleration from rest to a constant velocity

Energy Dissipative systems (drag, etc.) Thermodynamics at constant T, Pressure Elasticity (simple continuum mechanics, fracture, non-Hookean systems) Fluids About the same on Waves & oscillations Electricity & magnetism (most) Modern / quantum physics But with attention to applications in life sciences Physics process skills Keep physics approach to math modeling

Simplifying problems, finding essential features Quantitative model-building Empirical testing, limitations Experimental design, critiquing, refinement How to (better) teach Process Skills How to harness students motivation to succeed in our courses? Learn about their other courses connect explicitly to their chosen fields. Tell students these skills are a course goal Relate to their future career goals Test & grade based on these skills

How to (better) teach Process Skills Know students initial knowledge state Scientific skills develop over the long-term coordinate with other departments? Reference their other science course content? Integrated courses? (integrated sciences @ Princeton? Harvards chem/physics intro course?) Improve lab & integrate into lecture Assessment What do we want to assess? (what mix of content, skills, and attitudes) What existing assessment tools are useful? What new tools are needed and how can they

be developed? Can we test retention and/or transfer of skills into later (non-physics) courses? Many existing tools, but not aimed at this task Education Research Challenges How do IPLS students differ from other physic s populations? How to use lessons from Physics Education Research ? What new work can be done / needs to be done? Existing resources include: HHMI-funded NEXUS group (U. Md., others) Teaching problem-solving skills, U.Minnesota cooperative group problem-solving (CGPS) Hypothesis generation and testing: Rutgers groups Investigative Science Learning Environment (ISLE)

Explicit focus on reading and interpreting graphs (such as with Real-Time Physics) SCALE-UP and Arizona State -- modeling Institutional support Blue ribbon panelidentify & publicize best practices Funding initiatives to support curricular development and institutional changes AAMC: Clarity on timing, logistics of implementation & assessment AAMC: More specifics on the new MCAT Laboratories How do we meet the goals of competencies E1 &

E2, while including more life science content into the physics laboratory curriculum? Many institutions have such labs New emphases: imaging, diffusion, random walks, medical applications of circuits, optics. How to incorporate lessons from physics education research (SCALE UP) to make students learn desired competencies from these experiences? Our Lab Examples Bone scaling & rubber elasticity Geometrical optics & the human eye Electrocardiography lab

Our Lab Examples DNA crystallography with visible light (Institute for Chemical Education) Fluids mechanics Ultrasound Imaging Animal trajectories Spectroscopy & Quantum Dots Ultrasound Imaging Physics Students use pulse-echo imaging to detect the presence of objects within medical phantoms (test samples) Both M-mode and B-mode imaging is supported The labs explore attenuation, spatial

resolution and Time-Gain-Compensation. Final project involves imaging a medical model of breast tumors and a kidney phantom using an actual scanner Doppler and therapeutic units are also available for inexpensive purchase and lab use now Images: 3B Scientific & GE Lab Examples from elsewhere Imaging & bacterial motility (George Washington University) Brownian Motion (Centre College, U. Md., Johns Hopkins) Fluids & microfluidics (Johns Hopkins)

Process skills in the lab Enhance transfershow how physics leads into applications (Waves & Sound ultrasound imaging) Hypothesis testing: Bone Scaling simple Galilean theory does not work! Interpretation skills & data analysis Teamwork Reading (simple, basic) in the scientific literature Google: intro physics life sciences AAMC-HHMI physics http:// ks/IPLSResources.php AAMC-HHMI report: 090604.htm New MCAT MR5: ortoverview.pdf

Recently Viewed Presentations

  • my job today .. 1. specificities of NAPPO

    my job today .. 1. specificities of NAPPO

    NAPPO provides a forum for public and private sectors in Canada, the United States and Mexico to collaborate in the regional protection of agricultural, forest, other plant resources, and the environment while facilitating safe trade
  • Name of Planet

    Name of Planet

    Saturn Dalia and Tabatha History Saturn was discovered by Galileo in 1610 it was seen through a telescope. Saturn was named after the God of sowing seeds and of the harvest Solar System Saturn is the sixth planet from the...


    Bulk micromachining is a process used to produce micro machinery or microelectromechanical systems (MEMS). Common chemicals used in anisotropic etching processes are: Potassium hydroxide (KOH)/H. 2. O solutions, sometimes with ispropyl alcohol (IPA) additive at 65-85°C. Ethylene diamine pyrocatechol (EDP),...
  • Chapter 9: Break-Even Point and CostVolume-Profit Analysis Cost

    Chapter 9: Break-Even Point and CostVolume-Profit Analysis Cost

    Income Statement Approach. Sales. LessTotal variable costs. Contribution Margin. LessTotal fixed costs. Profit before taxes. Income taxes. ... Using CVP analysis to improperly support long-term cost management strategies. Visually distorting break-even graphs.
  • Modeling Consumer Decision Making and Discrete Choice Behavior

    Modeling Consumer Decision Making and Discrete Choice Behavior

    Discrete Choice Modeling. William Greene. Stern School of Business. New York University. 0 Introduction. 1 Summary. 2 Binary Choice. 3 Panel Data. 4 Bivariate Probit. 5 Ordered Choice. 6 Count Data. 7 Multinomial Choice. 8 Nested Logit. 9 Heterogeneity. 10...
  • SEG3101 (Fall 2018) Requirements Modelling with UML 2

    SEG3101 (Fall 2018) Requirements Modelling with UML 2

    UML Class Diagrams for Domain Models . ... Design a simple domain model for a genealogy software application. What are the relevant classes, attributes and associations? Do you see some constraints that are difficult to express with UML class diagrams?
  • Mitchell County Pioneer Cemetery Restoration Project

    Mitchell County Pioneer Cemetery Restoration Project

    DEFINED BY THE STATE OF IOWA A CEMETERY HAVING NO MORE THAN 6 BURIALS IN THE PREVIOUS 50 YEARS Mitchell County Pioneer Cemetery Restoration Project OBJECTIVES OF THE RESTORATION PROJECT ARE TWO-FOLD Mitchell County Pioneer Cemetery Restoration Project FIRST Cleaning...
  • CSE 3521: Intro to Artificial Intelligence

    CSE 3521: Intro to Artificial Intelligence

    Fig. 1. Spectrograms of clean and noisy data included in the Mandarin SPEECON database. (a) Clean data recorded in office space. (b) Noisy data recorded in public space. Yamagishi et al., "Thousands of Voices for HMM-based Speech Synthesis - Analysis...