The vestibular system Michael E. Goldberg, M.D. Please

The vestibular system Michael E. Goldberg, M.D. Please

The vestibular system Michael E. Goldberg, M.D. Please sit where you can examine a partner First you tell them what your gonna tell them The vestibular organs sense head motion: canals sense rotation; otoliths sense linear acceleration (including gravity). The central vestibular system distributes this signal to oculomotor, head movement, and postural systems for gaze,

head, and limb stabilization.. The visual system complements the vestibular system. Visuo-vestibular conflict causes acute discomfort. Peripheral and brainstem vestibular dysfunction causes pathological sense of self-motion and visuo-vestibular conflict. The vestibular labyrinth answers two questions basic to the human condition Where am I going?

Which way is up? The vestibular labyrinth answers the two questions basic to the human condition by sensing Head angular acceleration (semicircular canals) Head rotation. Head linear acceleration (saccule and utricle) Translational motion.

Gravity (and by extension head tilt). The vestibular organ Vestibular Nerve Anterior vertical canal Facial Nerve Horizontal canal Vestibulocochlear

(VIII) Nerve Posterior vertical canal Cochlear Nerve Cochlea Saccule Utricle The vestibular organ lies in the temporal bone

Foramen Magnum Each vestibular organ has a sensor for head acceleration, driven by hair cells similar to those in the cochlea In the cochlea vibration induced by sound deforms the hair cells. In the labyrinth acceleration deforms the hair

cells. In the semicircular canals the sensing organ is the ampulla Deformation of the stereocilia towards the kinocilium causes hyperpolarization depolarization hyperpolarization

Hair cells respond to deformation Hair Cell Vestibular Neuron How the semicircular canals sense rotation Cupula Ampullary

Crista Ampulla Endolymph Semicircular Canal The three semicircular canals lie in 3

orthogonal planes Cochlea Anterior Vertical Canal Horizontal Canal Posterior Vertical Canal

Cochlear N Vestibular N VestibuloCochlear N (Nerve VIII) The semicircular canals are functionally paired and sense rotation Horizontal canals: rotation in the horizontal plane

Left anterior and right posterior canals (LARP): rotation in the vertical plane skewed 45 anteriorly to the left. Right anterior and left posterior canals (RALP): rotation in the vertical plane skewed 45 anteriorly to the right. The semicircular canals are functionally paired The canals lie in roughly the

same planes as the extraocular muscles: Horizontal canals: lateral and medial recti. LARP: left vertical recti, right obliques. RALP: right vertical recti, left obliques. Each canal excites a pair of muscles and inhibits a pair of

muscles in its plane. Its partner excites the muscles it inhibits, and vice-versa. The otolith organs sense linear acceleration. Hair cells lie in the macula. Otoconia (ear dust) Otolithic Membraine

When the head tilts the hair cells are distorted by the shift of the otolithic membrane The otolith organs sense linear acceleration The saccule senses acceleration in the sagittal vertical plane: up and down (so it senses gravity) and forward and backward. Mnemonic: Saccule - Sagittal

The utricle senses acceleration in the horizontal plane: The signals in the vestibular nerve Although the cupula senses acceleration, the canal signal in the vestibular nerve is a tonic signal, deviations from which are proportional to head velocity.

The macular afferents have a tonic signal, deviations from which are sensitive to acceleration. There are 3 major vestibular reflexes Vestibulo-ocular reflex keep the eyes still in space when the head moves. Vestibulo-colic reflex keeps the head still in space or on a level plane when you walk. Vestibular-spinal reflex adjusts posture for

rapid changes in position. Connections to the vestibular nucleus from the canals Nuclear Connections of the Otolith Organs The lateral vestobulospinal tract

Originates in the lateral vestibular nucleus, predominantly an otolith signal. Projects to cervical, thoracic, and lumbar segment via the ventral funiculus. Entirely ipsilateral. Allows the legs to adjust for head movements. Provides excitatory tone to extensor muscles. Decerebrate rigidity is the loss of inhibition from cerebral cortex and cerebellum on the LVST, and exagerates the effect of the tonic signal in

the LVST. The Medial Vestibulospinal Tract (MVST) Originates in the medial vestibular nucleus, predominantly a canal signal. Predominantly projects to cervical segments via the medial longitudinal fasciculus. Predominantly ipsilateral.

Keeps the head still in space mediating the vestibulo-colic reflex. The Horizontal Rotational Vestibulo-ocular Reflex Head position Eye position Gaze position

The Horizontal Translational VOR Keeps the eyes still when the head moves laterally (for example when you are looking out of the window of the A train and trying to read the name of the station past which you are traveling). Gain is dependent on viewing distance: during translation a far object moves less on the retina than a near object. The rotational VOR is not dependent upon viewing distance.

Most head movement evokes a combination of the rotational (canal) and translation (otolith) VORs. The VOR is plastic It can be suppressed when you dont want it. Its gain can change. How do you know if the VOR is doing a good job? There is no motion on the retina when the head moves. If a muscle is weakened, a given central signal will be inadequate, and the world will move on the retina.

This can be mimicked by spectacles that increase retinal slip. In either case, the brain adjusts the VOR signal so the retinal slip is eliminated. The cerebellum is necessary for both suppression of the VOR and for slip-induced gain change. The horizontal vestibulo-ocular reflex (VOR) Left Medial Rectus

Oculomotor Nerve (III) Right Lateral Rectus Abducens Nerve (VI) Oculomotor

Nucleus Vestibular Nuclei Lateral Medial Abducens Nucleus Nucleus Prepositus

Hypoglossi Vestibular Nystagmus The optokinetic signal The vestibular system is imperfect The cupula habituates in 5 seconds. The brainstem and cerebellum extend this time to roughly 25 seconds, after which there is no further response to head acceleration.

The vestibular system is a poor transducer of very slow (<0.1Hz) rotation. The visual system compensates for the inadequacies of the vestibular signal by providing a description of the retinal motion evoked by the head movement. The optokinetic response is mediated by neurons in the accessory optic system in the pretectum, and the motionsensitive areas in the cortex (MT and MST). The vestibular nucleus combines

visual and vestibular signals Rotate in Dark Rotate in Light Visual Motion Visual-vestibular conflict Full-field stimulation is an effective stimulus for the vestibular nucleus. The neurons cant

tell the difference, nor can you! Ordinarily the head movement implied by the visual and visual signals are equal. Motion sickness nausea and vomiting occurs when the visual and vestibular signals are unequal. Vertigo and nystagmus The vestibular system has a tonic signal, changes of which are interpreted as head

motion. Anything that deranges that signal causes vertigo, a perception of head motion when the head is still. This may be associated with visuovestibular conflict, nausea, and vomiting. Other sequelae of peripheral vestibular dysfunction Head tilt.

Difficulty compensating for perturbations of head positon functional imbalance. Difficulty with path integration. Peripheral causes of vestibular dysfunction Benign positional vertigo: debris from the otoconia in the utricle float into the posterior canal, causing interference with cupula function, brought out by motion in the plane of the affected posterior canal. This can be treated by the Epley

maneuver, that rotates the head to float the debris away. Acute viral labyrinthitis. Alcohol alcohol is lighter than blood, so the hair cells float in the endolymph. Menieres disease increased endolymphatic pressure. Toxins especially guanidino-sugar antibiotics like streptomycin and gentamycin. Central causes of vertigo and nystagmus.

Vestibular nuclei. Cerebellum. Peripherally caused nystagmus is worse with the eyes closed, because the normal cerebellum can use vision to suppress the nystagmus. Cortical vestibular areas Monkey

Human Perceptual aspects of vestibular function Self-motion. Vertical orientation. The vestibular nuclei project to the ventral thalamus (VP/VL) and thence to area 2v. A number of cortical areas have vestibular responses, but cortical vestibular processing is poorly understood. Patients with lesions of parietoinsular cortex have

difficulty perceiving the vertical: they think vertical lines tilt away from the side of the lesion.

Recently Viewed Presentations

  • Standard Cell Libraries - UToledo Engineering

    Standard Cell Libraries - UToledo Engineering

    Standard Cell Libraries-- Presentation by Abhay Dixit Meeta Bhate Kedar Rajpathak What are Standard Cell Libraries Standard-cell libraries are fixed set of well-characterized logic blocks. Advantages of standard cell libraries Designers save time and money by reducing the product development...
  • Folie 1 - UEF

    Folie 1 - UEF

    FF B Markendorf Pagram Rosengarten Siedlung Malchow Frankfurt (Oder) B 6174 Wiesenau Kunitzer Loose W./Wirtschaft Kalläne 6175 Aurith 6074 Finkenheerd Kraftwerk Fin- kenheerd Brieskow Finkenheerd Weißenspring Schlaube- hammer 6173 Groß Lindow 6072 Müllrose Pflegeheim Kaisermühl Biegenbrück Dubrow 6171 Müllrose Biegen...
  • AS-1 Seismograph Resources and Activities 1 L. Braile,

    AS-1 Seismograph Resources and Activities 1 L. Braile,

    In general, mb, MS, mbLg are good estimates of M (moment magnitude, Mw). AS-1 Seismograph Procedures: Archiving Data Archiving AS-1 data and seismograms: The AS-1 data recorded using AmaSeis (~ 1 MB/day) can be archived by writing a CD containing...
  • Dealing with different types of equations

    Dealing with different types of equations

    The different windows in SPSS. The difference between Data View and Variable View. By the end of this session you should be able to: Open SPSS and create a new data file. Read data in from existing files, both SPSS...
  • Amino Acids Proteins, and Enzymes

    Amino Acids Proteins, and Enzymes

    Chapter 19 Amino Acids and Proteins 19.2 Amino Acids as Zwitterions * * A zwitterion has an equal number of —NH3+ and COO- groups forms when the H from —COOH in an amino acid transfers to the —NH2 Zwitterions and...
  • GCSE English Language

    GCSE English Language

    Read the extract and create a mind-map of the contextual (social, historical, political issues influencing the writer) issues which may have influenced this particular moment of the text. Consider in your notes, what the writer is trying to say about...
  • Digital Systems: Hardware Organization and Design

    Digital Systems: Hardware Organization and Design

    G.729 G.723.1 Veton Këpuska Digital Systems: Hardware Organization and Design Architecture of a Respresentative 32 Bit Processor Speech Processing Speech Coding Speech Coding Definition: Speech Coding is a process that leads to the representation of analog waveforms with sequences of...
  • Communication and assertiveness skills for IT Staff

    Communication and assertiveness skills for IT Staff

    Communication and assertiveness skills for IT Staff. Tony Brett. Head of IT Support Staff ServicesIT ServicesUniversity of Oxford. Oxbridge Colleges IT Management Conference 21 March 2014