# MaterialTesting - Madison Local Schools

Material Testing Material Testing Reproducible evaluation of material properties Static Testing Material response to constant loading Dynamic Testing

Material response to varying loading conditions, including magnitude, cycling, and mode Static Material Testing Evaluation of Material Strength Deformation Fracture

Design requirement compliance Standardized Tests Tensile test Compression test Hardness test Tensile Test Uniaxial

A straight line axial force is applied to a test sample (typically in the y axis) Hounsfield Tensometer Image courtesy of NSW Department of Education and Training Destructive

Force is applied until sample fails Tensile Test Standard Test Sample (dog bone) Ensures meaningful and reproducible results Uniform cross section Tensile Test Procedure Dog bone is created to test specifications

Dog bone is secured in tester Tensile Test Procedure A tension force (F) is applied to the dog bone until failure occurs Simultaneously the applied tension force (F) and dog bone elongation (d)) are recorded

F d) A plot is created from the stored load elongation data Tensile Test Data A

F B d) Test sample A and B are 230 red brass. Test sample A has a diameter of 0.125 in. Test sample B has a diameter of 0.375 in. If both samples are tested to failure, will the

applied tension force and elongation be the same for both tests? NO Why? Tensile Test Data Load-elongation results are dependent upon sample size Larger sample indicates larger load-elongation How can test data be manipulated to

represent a material and not an individual test sample? Tensile Test Data To eliminate test results based on sample size, calculate sample stress Stress is load per unit area Divide load (F) by the original test sample cross-sectional area (A0)

load stress = area F = A Tensile Test Data

Calculate the stress in the dog bone with a 430 lb applied force. F = A area = r 2 area = (0.0625 in.) 2 area = 0.0123in.2

Tensile Test Data Manipulating Elongation Results To eliminate test results based on sample size, calculate sample strain Strain (e) - the amount of stretch per unit length Elongation (d) under load divided by the original Length (L0)

amount of stretch strain = original length Tensile Test Data Calculate the strain in the dog bone with an elongation of 0.0625in. 0.0625in.

= 1.000in. = 0.0625 Tensile Test Stress-Strain Curve Tensile Test Stress-Strain Curve

Initial response is linear Stress and strain are proportional to one another Elastic Range Proportional Limit (The stress at which proportionality ceases) Tensile Test Stress-Strain Curve

Modulus of Elasticity (E) The proportional constant (ratio of stress and strain) stress E= = strain

A measure of stiffness The ability of a material to resist stretching when loaded An inherent property of a given material Tensile Test Stress-Strain Curve If the load is removed, the test sample will return to

its original length The response is elastic or recoverable Exaggerated stretch to illustrate principle Tensile Test Stress-Strain Curve

Elastic Limit Uppermost stress of elastic behavior Elastic and proportional limit are almost identical, with the elastic limit being slightly higher Tensile Test Stress-Strain Curve Resilience

The amount of energy per unit volume that a material can absorb while in the elastic range Area under the stress-strain curve Why would this be important to designers? Hint: car bumper 1 bh 2 Tensile Test Stress-Strain Curve

Yield Point When the elastic limit is exceeded A very small increase in stress produces a much greater strain Most materials do not have a welldefined yield point Tensile Test Stress-Strain Curve

Offset Yield Strength Defines the stress required to produce a tolerable amount of permanent strain Common value is 0.2% Tensile Test Stress-Strain Curve Plastic Deformation

Unrecoverable elongation beyond the elastic limit When the load is removed, only the elastic deformation will be recovered Tensile Test Strength Properties Stress Strain Curve Plastic deformation represents failure

Part dimensions will now be outside of allowable tolerances Tensile Test Stress-Strain Curve Deformation Test sample elongation Cross-sectional area decreases Load bearing ability increases Why?

The material is getting stronger How? Tensile Test Stress-Strain Curve Weakest point is stretched and becomes stronger New weakest point is stretched and becomes stronger, and so on This keeps occurring until the decrease in

area overcomes the increase in strength Tensile Test Stress-Strain Curve Tensile Strength Load bearing ability peaks Force required to continue straining the test sample decreases

Weakest location at the peak continues to decrease in area Necking Tensile Test Stress-Strain Curve Failure If continued force is applied, necking will continue until fracture

occurs Ductility Amount of plasticity before fracture The greater the ductility, the more a material can be deformed Tensile Test Samples Compare the material properties of these three metal samples

Tensile Test Stress-Strain Curve Brittleness Material failure with little or no ductility Lack of ductility, not lack of strength Tensile Test Stress-Strain Curve Toughness

Work per unit volume required to fracture a material Total area under the stress-strain curve from test initiation to fracture (both strength and ductility) Compression Test Stress and strain relationships are similar to tension tests elastic and plastic behavior Test samples must have large cross-sectional area to resist bending and buckling

Material strengthens by stretching laterally and increasing its cross-sectional area Hardness Testing Resistance to permanent deformation Resistance to scratching, wear, cutting or drilling, and elastic rebound Brinell Hardness Test

A tungsten carbide ball is held with a 500lb force for 15 sec into the material The resulting crater is measured and compared Hardness Testing Rockwell Test A small diamond-tipped cone is forced into the test sample by a predetermined load

Depth of penetration is measured and compared Image Resources NSW Department of Education and Training (2011). Retrieved from http://lrrpublic.cli.det.nsw.edu.au/lrrSecure/Sites/Web/tensile_testin g/index.htm?Signature=%287e02281c-318a-461b-a8ed3394db0c4fe6%29

## Recently Viewed Presentations

• FlowVisor slices OpenFlow networks, creating multiple isolated and programmable logical networks on the same physical topology. Each application runs in an isolated slice of the network. The SDN Stack. Controller. NOX. Slicing. Software. FlowVisor. FlowVisor.
• Let Us Celebrate The Day of the Lord Easter Sunday Welcome to Worship Welcome and Announcements Good Samaritan Offering Call to Worship Liturgist
• This report analyzes online job postings, not job openings. Jobs and employers who do not advertise online are underrepresented here. * Management occupations span the other occupational groups. Page 1 of 2. A Summary of Cook County Online Job Postings....
• ESEA History (continues) Schools with 40% or more students living in poverty are eligible to become "school-wide" Title I schools. Schools write annual plans based on annual needs assessments to describe the use of the Title I funds and how...
• San Francisco Declaration on Research Assessment (DORA) "Do not use journal-based metrics, such as Journal Impact Factors, as a surrogate measure of the quality of individual research articles, to assess an individual scientist's contributions, or in hiring, promotion, or funding...
• Melanie forero. danielamartinez. danielmoreno. diego rivada. juan campo. nicholas parra. Telegraph Speeds Communication. Samuel F. B. Morse perfected the telegraph by studying electricity and magnetism, he put the work of other scientists together into a practical machine.
• Joke: use skype instead of telephone. GPU Computing. Offload expensive kernels for Parallel Ocean Program (POP) from CPU to GPU ... Cashmere skeleton. Kernel performance (GFLOP/s) K-Means on a homogeneous GTX480 cluster. scalability. absolute performance. Heterogeneous performance.
• Book Antiqua Arial Verdana Wingdings Times New Roman Eclipse 1_Eclipse Kinesiology for Manual Therapies Learning Outcomes Learning Outcomes Introduction Reference Positions Anatomical Directional Terminology Body Regions Planes of Motion Axes of Rotation Skeletal System Skeletal Functions Types of Joints Types...