Deflection Limits for Floor Trusses

Deflection Limits for Floor Trusses

Deflection Limits for Floor Trusses Overview Revised 3/23/2017 SBCA has been the voice of the structural building components industry since 1983, providing educational programs and technical information, disseminating industry news, and facilitating networking opportunities for manufacturers of roof trusses, wall panels and floor trusses. SBCA endeavors to expand component manufacturers

market share and enhance the professionalism of the component manufacturing industry. Copyright 2017 Structural Building Components Association. Introduction Building codes require buildings, structures and parts thereof to be designed and constructed for strength and serviceability Strength requirements ensure the structure or member will be safe Serviceability requirements ensure the building or member remains useful Serviceability issues are often overshadowed by strength issues, as deflection concerns rarely affect life safety However, the vast majority of complaints received by component manufactures relate to serviceability issues

Introduction Current building codes provide minimum design requirements for floor deflection Manufacturers and trade associations often recommend more stringent deflection requirements to address serviceability or appearance for a variety of products including: Gypsum floor topping

Light-weight concrete topping Ceramic or porcelain floor tile Natural stone flooring (including marble) Composite stone flooring Introduction Although both deflection of individual structural members (including floor trusses) and of the subfloor material must be considered, this presentation focuses solely on deflection of the structural members

Source: Key Definitions AUTHORITY HAVING JURISDICTION (IBC Section 104.1) The building official authorized and directed to enforce the provisions of a building code who also has the authority to render interpretations of this code and to adopt policies and procedures in order to clarify the application of its provisions BUILDING DESIGNER (ANSI/TPI 1 Section 2.2) The owner of the building or the person that contracts with the owner for the design of the building structural system and/or who is responsible for the preparation of the construction documents. When mandated by the legal requirements, the Building Designer shall be a registered design professional CONSTRUCTION DOCUMENTS (IBC Section 2) Written, graphic and pictorial

documents prepared or assembled for describing the design, location and physical characteristics of the elements of a project necessary for obtaining a building permit Key Definitions CONCENTRATED LOAD (SBCA Terminology) Loading applied at a specific point, such as a load-bearing wall running perpendicular to a truss, or a roof-mounted A/C unit hanging from a truss. CREEP (SBCA Terminology) Time-dependent deformation of a structural member under constant load DEAD LOAD (D) (IBC Section 2) The weight of materials of construction incorporated into the building, including but not limited to walls, floors, roofs, ceilings, stairways, built-in partitions, finishes, cladding and other similarly incorporated architectural and structural items, and the weight of fixed service equipment, such as cranes, plumbing stacks and risers, electrical feeders, heating, ventilating and air-conditioning systems and automatic sprinkler systems

Key Definitions DEFLECTION () (SBCA Terminology) Amount a member sags or displaces under the influence of forces LIVE LOAD (L) (IBC Section 2) A load produced by the use and occupancy of the building or other structure that does not include construction or environmental loads such as wind load, snow load, rain load, earthquake load, flood load or dead load LOADS (IBC Section 2) Forces or other actions that result from the weight of building materials, occupants and their possessions, environmental effects, differential movement and restrained dimensional changes. Permanent loads are those loads in which variations over time are rare or of small magnitude, such as dead loads. All other loads are variable loads (see Nominal loads) TRUSS DESIGN DRAWING (ANSI/TPI 1 Section 2.2) Written, graphic and pictorial depiction of an individual truss that includes information required in ANSI/TPI 1.

Background IBC The IBC includes specific requirements regarding deflection in Section 1604.3 and specific requirements for floor structural members in Table 1604.3. Background IBC Table 1604.3 includes consideration of creep in footnote d Background IBC Creep refers to timedependent deformation of a

structural member under constant load. Factors that cause an increase in creep include: Increased stress level Moisture content Temperature Background IRC The IRC includes requirements for floor installation, including for floors with the floor topping products covered in this presentation

The IRC does provide deflection requirements, but does not address creep. Background TPI 1 ANSI/TPI 1 (referenced by the IBC and IRC) includes: Section 7.6 provides guidance for deflection limits for trusses. TPI 1-2014 has been updated to account for the recent clarifications in the IBC regarding creep.

Application Truss design software typically addresses code deflection requirements by default; the building designer may specify more stringent criteria. Dead loads associated with floor covering products may significantly affect design limitations (strength, deflection and creep) Thus, it is important for the building designer to provide all the information required in ANSI/TPI 1 Section, especially relating to serviceability. Application

Live loads and concentrated loads are typically code specified or included in a referenced document like SEI/ASCE 7. Given complete and accurate loading and serviceability information, truss designs will account for all the considerations and include pertinent information on the Truss Design Drawing. Application Types of Deflection Deflection in a floor assembly can occur in multiple ways: Along the truss

In the sheathing between the trusses Differential movement between adjacent trusses Deflection criteria are applicable to each component Source: Application Differential Expansion Causes Moisture Few tile installations are waterproof. Unless a waterproof membrane is

installed, moisture from repeated mopping or heavy wetting can eventually cause problems Radiant Heating Systems Heating elements can create weak points in the concrete leading to cracking that can transmit to the grout or tile unless an anti-fracture membrane is used Source: Application Poured Topping

Although the poured topping industry does not appear to provide generic design information via a trade association, typical deflection requirements for both structural members and subfloor are as follows: Live Load deflection L/360 Total Load deflection L/240 Poured topping installed thickness and weight can vary widely. Typical values include: gypsum-based topping ~ 7 psf. gypsum-based topping ~ 7 psf. 1 concrete-based topping ~ 12 psf Application Brittle Floor Coverings

The IRC and IBC both reference ceramic tile installation to be in accordance with ANSI A108.1 A/B, A108.4, A108.5, A108.6, A118.1, A118.3, A136.1 and A137.1. The Tile Council of North America (TCNA) publishes a Handbook for Ceramic, Glass, and St one Tile Installation which provides guidance, although it is not referenced by the building codes. Application Brittle Floor Coverings TCNA substrate requirements include:

Follow applicable building codes Ceramic tile live load deflection shall not exceed L/360 Stone tile live load deflection shall not exceed L/720 The owner should communicate loading requirements to the designer Designer and contractor must make allowances for all live and concentrated loads, including during construction and maintenance, such as heavy vehicles See Typical Weight of Tile Installation for dead loads including tile and setting bed. Typically, a 1/2"-thick mortar bed will weigh about 6 psf.

Tile contractor responsibilities with respect to subfloor adequacy and installation Application Brittle Floor Coverings In a technical service bulletin, TCNA states the following: Recent research has shown tile to fail, under some conditions, when the floor is more rigid than L/360. In fact, failures at L/600 have been observed. It is for this reason that recommendations for floor rigidity are not based on deflection measurements but on empirically established methods found to work over normal code construction. Application Brittle Floor Coverings The TCNA Handbook includes assemblies with tile over wood which specify:

Structural members Stated maximum on center spacing Specific subfloor & underlayment requirements Maximum tile size Other details as required Amongst TCNA listed assemblies: 23 floor systems utilize plywood. One OSB Eight require two-layer all plywood (i.e., subfloor & underlayment) Six allow supporting members to be spaced at 24 oc. Two permit supporting members to be spaced at 19.2 oc.

The remaining require supports to be spaced at 16 oc or less. Application Brittle Floor Coverings TCNA also gives installation guidelines: Subflooring and underlayment should be installed with the strength axis perpendicular to the supports and 1/8 spacing (gap) between sheets Underlayment panel edges should be offset from edges of subflooring by six inches Underlayment panel ends should be offset from subfloor panels ends by one or more joist spaces plus at least 2 (6 optimum) Attach underlayment to the subflooring with ring shank nails or screws and not to

the floor joists or trusses Application Brittle Floor Coverings The following listed assemblies allow wood structural members (including trusses) spaced at 24 gypsum-based topping ~ 7 psf. o.c. Application Brittle Floor Coverings The Engineered Wood Association (APA) in cooperation with TCNA, has tested a number of floor systems with joists spaced 24" o.c. with both plywood and OSB (see APA Technical Topic TT-006, Ceramic Tile Over Wood Structural Panel Floors, Revised May 1, 2014).

It includes many of the same assemblies as are listed in the TCNA Handbook and some additional. Application Marble Flooring 3.8 Deflection of Surfaces The 3.8.1 General Contractor Responsibility. It is the responsibility of the General Contractor to Marble Institute of Am provide a rigid, code-compliant structure that is adequate to accommodate the stone and its erica (MIA)

anchorage including all associated loads and forces. also publishes 3.8.2 Cast-in-Place Concrete Floors. Design substrate for total load deflection not exceeding L/360, as measured between control or expansion joints. installation 3.8.3 Frame Construction. The subfloor areas over which stone tile is to be applied must be requirements designed to have a deflection not exceeding L/720 of the span. In calculating load, the weight of The dead loads for the stone and setting bed must be considered. Strongbacks, cross-bridging or other reinforcement shall be used to limit differential deflection stone flooring between adjacent framing members. products vary widely, 3.8.4 Maximum variation of a concrete slab or subfloor shall not exceed 1/8" in 10' from the

required plane when thin set systems are applied. and must be 3.8.5 Allowance should be made for live load and impact, as well as all dead load, including accounted for in weight of stone and setting bed. addition to building Mortar Bed Weight. For estimating purposes, mortar bed weight can be approximated as 0.75 lb per square foot per each 1/16 of thickness. code minimum Stone Weight. For estimating purposes, stone weight can be approximated as 1 lb per square foot per requirements each 1/16 of thickness. Differential Deflection Differential Deflection refers

to the relative deflection of adjacent trusses The Building Designer is responsible for specifying any limitations regarding differential deflection between adjacent trusses (Section of TPI 1) Differential Deflection Conditions where differential deflection may be objectionable: A bearing wall continuously supports one truss in a series of trusses otherwise supported only at their ends

Trusses in hip systems where a shallower and more heavily loaded girder truss is adjacent to deeper common trusses Truss with flat bottom chord is adjacent to a scissors truss Partition walls oriented parallel to the floor trusses, especially those supporting cabinets or tile Differential Deflection TPI 1 TPI 1 Commentary Section 7.6.2 provides a method for addressing differential deflection < 2 x Ls/Limit

Differential Deflection TPI 1 Non-Bearing Partitions. The weight of non-bearing partitions shall be permitted to be ignored for Truss design purposes given the following conditions: (a) Trusses are spaced less than or equal to 24 in. (610 mm) on center; (b) All Top Chord panel lengths of supporting Trusses are less than or equal to 30 in. (760 mm) when the lumber is oriented in the flat direction; (c) Design live load of supporting Trusses results from a residential occupancy and is not more than 40 psf (1920 Pa); and (d) Partition weight is less than or equal to 60 pounds per linear foot (875 N/m). Non-Bearing Partition Weight Not Permitted to be Ignored. If the conditions listed above do not exist, the Building Designer shall specify in the structural design documents the non-bearing partition loads that need to be applied to the Trusses. Non-Load Bearing Partitions Parallel to Supporting Trusses. When non-load bearing partitions parallel to supporting Trusses are not located on or immediately adjacent to a Truss, the sub-floor shall be of adequate strength and stiffness to support the non-load bearing partition load, or other provisions shall be made by the Building Designer to distribute the non-load bearing partition weight to the supporting Trusses. Subfloor Deflection For information on the deflection of subfloor material see the following resources: Ceramic Tile on Wood Floors, Frank E. Woeste Ph.D., P.E. & Peter Nielson Position of Underlayment to Prevent Cracked Tile and Grout, Frank E. Woeste P.E. & Peter Nielson Preventing Cracked Tile and Grout, Frank E. Woeste & Peter Nielson Investigating Tile Failures on Wood-Frame Floor Systems, Frank E. Woeste & Peter Nielson CTIOA Field Report 2001-11-19 Ceramic Tile Over Wood Sub-Floors Regarding Deflection,

David deBear, CTC Deflection Limitations, Dale Kempster Universal Floor Tester: An Opportunity for Improved Ceramic Tile Assembly Evaluations, Sean Gerolimatos, Dale Kempster, Peter Nielsen, Frank Woeste References

2015 International Building Code 2015 International Residential Code ANSI A108.01 General Requirements: Subsurfaces and Preparations by Other Trades ANSI A108.02 General Requirements: Materials, Environmental, and Workmanship ANSI A108.1A Installation of Ceramic Tile in the Wet-Set Method, with Portland Cement Mortar A108.1B Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar ANSI A108.4 Installation of Ceramic Tile with Organic Adhesive or Water Cleanable Tile-Setting Epoxy Adhesive ANSI A108.5 Ceramic Tile Installed with Dry-Set or Latex-Portland Cement Mortar ANSI A108.6 Ceramic Tile Installed with Chemical Epoxy Mortar and Grout ANSI A108.8 Installation of Ceramic Tile with Chemical Resistant Furan Resin Mortar and Grout

ANSI A108.9 Ceramic Tile Installed with Modified Epoxy Emulsion Mortar/Grout References ANSI A118.1 American National Standard Specifications for Dry-set Portland Cement Mortar ANSI A118.3 American National Standard Specifications for Chemical-resistant, Water-cleanable Tile-setting and -grouting Epoxy and Water Cleanable Tile-setting Epoxy Adhesive ANSI A137.1 American National Standard Specifications for Ceramic Tile For a complete listing of standards related to the tile industry see the TCNA website. ANSI/AWC National Design Specification (NDS) for Wood Construction ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction APA Technical Topic TT-006, Ceramic Tile Over Wood Structural Panel Floors ASCE/SEI 7 Minimum Design Loads for Buildings and Other Structures Dimension Stone Design Manual version 7.2; Marble Institute of America SBCA Load Guide, version 2.02; Structural Building Components of America, 2016

TCNA Handbook for Ceramic, Glass, and Stone Tile Installation; Tile Council of America. March 2015

Recently Viewed Presentations

  • Il Sublime Nel Xviii Secolo

    Il Sublime Nel Xviii Secolo

    David, La morte di Socrate, (1787) MET, New York David, Il giuramento degli Orazi, 1785, Parigi Louvre I topoi letterari del sublime sublime morale Corneille, Horace, III, 6 ("Qu'il mourut") Corneille, Medée, I, 6 Longino: il sublime è l'eco di...
  • Chapter 1

    Chapter 1

    Manufacturer-sponsored wholesaler franchise system (soft-drink industry). 3]. Service-firm-sponsored retailer franchise system (auto-rentals, fast food, hotels business). Selecting Channel Members The first decision that must be reached is to select the channel members.
  • Revelation Chapter 7  The Sealed Call to Worship

    Revelation Chapter 7 The Sealed Call to Worship

    (Revelation 2:13) To the one who is victorious, I will give the right to sit with me on my throne, just as I was victorious and sat down with my Father on his throne. Whoever has ears, let them hear...
  • Leaf Botany and Plant Cell Biology - Huntsville, TX

    Leaf Botany and Plant Cell Biology - Huntsville, TX

    Leaf Botany and Plant Cell Biology. By C. Kohn, Waterford, WI. Materials based on "Botany Basics" by Ann Marie VanDerZanden, OSU. Leaf Function. The main function of leaves is to absorb sunlight and use this energy to produce sugars.
  • Chapter 3 The English Establish 13 Colonies

    Chapter 3 The English Establish 13 Colonies

    As you have seen, many of the English colonists who came to Virginia during the 1600s fought with the Native Americans. They also battled one another. By the 1670s, one fourth of the free white men were former indentured servants....
  • Title: Palatino, TCNJ Blue

    Title: Palatino, TCNJ Blue

    We use their monthly search and full text (FT) download data, from Jan. 2006 to Nov. 2018 (155 months). So we have a total of 155 pairs of search and FT data for each database, except PsycInfo and PsycArticle. The...
  • The Pearl by John Steinbeck Based on an old Mexican folk tale

    The Pearl by John Steinbeck Based on an old Mexican folk tale

    The Pearl by John Steinbeck A novella based on an old Mexican folktale "In the town they tell the story of the great pearl -- how it was found and how it was lost again. They tell of Kino the...
  • Standard Biology Chapter 26 Inheritance of Traits

    Standard Biology Chapter 26 Inheritance of Traits

    Standard Biology Chapter 26 Inheritance of Traits Section 1 Genetics, How and Why * * Genetics Genetics: the study of how traits are passed from parent to offspring Mystery for a long time Now know traits are passed in sex...